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1. INTRODUCTION 

The new kHz Single photon sensitive SLR stations are typically operated at low return rates (~10%) to minimize range 
biases due to “first photon effects”. Unfortunately, operation at low return rates partially negates one of the advantages 
of kHz systems, i.e. the ability to form accurate normal points more quickly, thereby reducing overall data volume by 
an order of magnitude or more and limiting the ability to move rapidly between satellites.At the 2017 ILRS Technical 
Workshop  in Riga, the author proposed that the use of  centroid detection circuits, instead of legacy threshold detection 
receivers,  would allow the rapid production of bias-free normal points independent of signal return rates.The present 
paper investigates an alternative software approach for removing rate-dependent range bias which is applicable to 
commonly used threshold detection systems. 

Signal detection is  modelled as a Two State Markov Process,  and the return rate within a given Normal Point (NP) 
is used, via Poisson statistics,  to estimate the number of 1, 2, 3..etc photoelectron events contributing to the NP and 
to correct for the range bias.The single photon Probability Distribution Function (PDF) for the instrument ranging to 
a target (i.e. calibration or satellite) can be obtained theoretically or experimentally and used to correct for biases at 
high return rates. 

2. PHOTOELECTRON DISTRIBUTION VS NP RETURN RATE 

For an SLR receiver having a single photon detection threshold, the probability of detecting the satellite signal is given 
by Poisson statistics as 

𝑃" = 1 − 𝑒𝑥𝑝( − 𝜂)          (1) 

where η is the mean number of photoelectrons detected per pul se. Solving for η yields 
𝜼 = 𝒍𝒏 / 𝟏

𝟏1𝑷𝑫
4           (2) 

       
From Poisson statistics, the probability that a given return within the NP consists of n photoelectrons when the mean 
number is η is given by   

          (3)  

Using Eqs. (1) and (3) and the fact that the return rate is given by RR=PD(100%) we can generate the graphs in 
Figure 1. 
 
3. SGSLR LINK EQUATION 
 
  As demonstrated in this section, there are many operational scenarios where high return rates can be expected for 
the newsingle photon sensitive, kHz NASA Space Geodesy Satellite Laser Ranging (SGSLR). To compute the 
expected satellite return rates, we use a comprehensive  link equation  
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which includes relevant station and satellite parameters, telescope pointing bias and jitter, atmospheric visibility, 
mean cirrus cloud transmission, atmospheric turbulence effects and target speckle [Degnan, TBD} as listed in Table 
1. The resulting plots of Probability of Detection, PD, for three representative satellites  (Starlette,LAGEOS, and 
GNSS), as a function of satellite zenith angle and atmospheric visibility are presented in Figure 2. As one can see 
from Figure 2, there are numerous operating conditions, even for GNSS satellites at roughly 20,000 km altitudes, 
where the expected return rate far exceeds the “bias free” value of 10%. 
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Figure1: Left Axis-Probability of detecting n photoelectrons (n= 0 to 5) as a function of Return Rate within 
the Normal Point. Right Axis-Dashed curve indicates the mean photoelectrons detected vs Return Rate.  

Table 1. List of SGSLR and atmospheric parameters used in the link analysis. 

4. PROBABILITY DISTRIBUTION FUNCTION (PDF) 

The PDF for the photon time of arrival at the receiver is obtained by convolving the PDFs of the laser (L), 
the target (T),  and the receiver (R), i.e 

.𝜆(𝑡) = 𝐿 ∗ 𝑇 ∗ 𝑅          (5)  
Thus, the photoelectrons arriving at the receiver have a PDF  given by 
𝜆(𝑡) = ∫ 𝑑𝑡ʹ𝑅(𝑡 − 𝑡ʹ) ∫ 𝑑𝑡ʹʹ𝐿(𝑡")𝑇(𝑡ʹ− 𝑡"):ʹ
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which, for a single retro range calibration target reduces to 

𝜆T(𝑡) = ∫ 𝑑𝑡′𝑅(𝑡 − 𝑡′) ∫ 𝑑𝑡′′𝐿(𝑡")𝛿(𝑡′+ 𝜏T − 𝑡")
:′
1∞ =:

1∞ ∫ 𝑑𝑡′𝑅(𝑡 − 𝑡′)𝐿(𝑡′+ 𝜏T)
:
1∞  

 (7)  
where τ

c
 is the roundtrip flight time to the target. The instrument PDF due to the laser and receiver, λ

c
(t), can be 

measured at the output of the detector with a high speed oscilloscope or, for ultrashort pulses, a sampling scope, but 
we will also provide an experimental alternative for determining λ

c
(t). 

Figure 2: Mean Probability of SGSLR detecting three representative satellites (Starlette, LAGEOS, and GNSS) as a 
function of satellite zenith angle and four atmospheric visibilities: V=60 km Extremely Clear-red), 23 km 
(Standard Clear-blue), 15 km (Clear-green) and 8 km (Light Fog-black). A “Good Site” with an atmospheric  
coherence length ρ0 = 10 cm was used to characterize the impact of atmospheric turbulence on beam 
propagation. For an “excellent” astronomical site ,  ρ0 = 20 cm. 

5. DETECTION AS A TWO STATE MARKOV PROCESS 
 
Threshold detection can be treated as a Two State Markov Process (Degnan, 1994) with the initial state being “no 
detection” and the final state being “detection” (if n>0). The time of detection PDF depends on the detection 
threshold, T, the number of photoelectrons detected, n, and the n-photon temporal PDF distribution λ(t) given by  

     (8) 
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      (9) 
For  a single photon detection threshold (T = 1) as in kHz SLR systems, a(n,1,t) = nλ(t) and 

     (10) 
 
where λ(t) has a non-zero value only in the time interval t

0
 < t < t

f 
and the integral of λ (t) over that interval is equal 

to 1. Furthermore, once λ(t)  is known, the functional form of μ
n
(t) is determined for all values of n. 

 For a normal point generated with multiple values of n and having a mean signal strength η, the bias in the photon 
time of detection is 

    (11) 
where the centroid of the PDF for n detected photoelectrons is given by  

   (12) 
which, in the limit as n goes to zero, reduces to the unbiased photon arrival time  

          (13) 
6. DETERMINING λ(t) EXPERIMENTALLY 
 
One can measure the function λ(t) from range data to the calibration target (or even a satellite by  utilizing  a low 
return rate (<10%) such that one is always seeing single photon returns. In this instance, the PDF of the measured 
ranges should obey the functional form  

       (14) 
where t0 < t < tf   and t

0
 and t

f 
are defined as the end points of the n=1 detection PDF where λ(t)=0.  Figure 3 shows 

the unsmoothed single photon PDF, P
1
(t),  for NASA’s prototype NGSLR station ranging to the calibration target. 

The profile P
1
(t) can be smoothed (for example)  by: (1) computing the Fourier Transform, (2) applying a bandpass 

filter to eliminate high frequency noise,  and then (3) computing the inverse Fourier transform to provide the 
function μ

1
(t) in tabulated or functional form. This can then  be used to compute λ(t) and the PDFs, P

n
(t), for a small 

range of n values and correct for biases in all future measurements to the same calibration target or satellite. We 
begin by computing μ

1
(t) from the observed single photon PDF P

1
(t) 

   (15) 
Integrating both sides of the equation with respect to t  yields 

         (16) 
and computing the logarithm of both sides gives 
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         (17) 
 
and differentiating both sides with respect to t yields our final result 
 

          (18) 
 
 

 
Figure 3: Unsmoothed Probability Distribution Function P1(t) of NASA’s NGSLR system ranging to a single 
cube corner calibration target.  
 
7. CORRECTING THE NORMAL POINT RANGE BIAS AT HIGH RETURN RATES 

 
The blue curve in Figure 4(a) is the smoothed version of the Probability Distribution Function P1(t) in Figure 3 
while the red curve is the photon arrival PDF, λ(t), derived using Eqs. (14) and.(18).  The linear plot in Figure 4(b) is 
the expected range bias as a function of the return rate as  computed from Eq.(11). Finally, in Figure 4(c) , the 
measured range to the calibration target (brown curve – left axis) decreases as the return rate per one minute bin 
increases from a few percent to about 55% (blue curve-right axis). The red curve is generated by adding the negative 
range bias in 4(b) to the measured range at very low return rates which results in good agreement between the 
measured (brown) and corrected (red) ranges 
 
8. SUMMARY 
 
We have proposed both a theoretical and an experimental method for correcting the range bias in a normal point for 
an arbitrary return rate. This method not only provides a potentially bias-free range measurement but also  removes 
the restriction to use only low return rates thereby greatly: (1) reducing the integration time for normal point 
generation  and reducing the length of the orbital path which defines that normal point; (2)enhancing satellite data 
ηvolumetric output in kHz SLR systems; and (3) Speeding up the interleaving of satellites. 
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(a)                                                    (b)                                                       (c) 

Figure 4: (a) Red λ(t) curve derived from the blue experimental photon detection PDF, P1(t), to a single cube 
corner calibration target  having a delta function optical response; (b) the derived theoretical range bias 
introduced by a growing return rate has a linear slope given by ΔRC= -26.7mm(PD) which can be explained by 
the substitution of e-η = (1-PD) from Eq (1) into (11); (c) the agreement between the measured range (brown) 
with the corrected range(red) as the return rate in one minute samples is increased  from a few percent to 
about 55% (blue).  Similar analysis of NGSLR to LAGEOS data over a wide range of return rates also 
resulted in a linear range bias given by ΔRL= -28.5mm(PD)  (see accompanying power point presentation).  
 
The theoretical method determines the function λ(t) by convolving the known PDFs for the laser, target, and 
receiver and then uses the result to compute the various PDFs associated with higher values of n and their 
corresponding time or range centroids, tn. A theoretical model applicable to spherical satellites has been presented 
previously by the author ( Degnan, 1993) and in the accompanying PowerPoint presentation for this Workshop. The 
experimental method uses low return rate measurements(<10%) to a particular target (calibration or satellite) to 
determine the single pe PDF P1(t) for that target and again uses that result to compute the PDFs and centroids for 
higher values of n. High frequency noise in the experimental data can be removed by a smoothing method, e.g. 
computing the Fourier transform, applying a bandwidth filter, and performing an inverse Fourier Transform. The 
approach assumes that the target response is largely independent of viewing angle, as with uniformly populated 
spherical geodetic satellites  (LAGEOS, Starlette, etc.) or remote sensing or GNSS satellites where legacy flat panel 
arrays are replaced by segments of uniformly populated spheres (Degnan, 2016). Our results to date using NGSLR 
data suggest that the range bias is expected to vary linearly from 0 at very low return rates to a maximum on the 
order of -27 mm at very high return rates near 100%. Thus, two bias measurements at a very low and very high rate 
can define the bias at all rates.  
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P1(t) = photon detection PDF

λ(t) = photon arrival PDF


